φbonacci

Mi conjunto de números favoritos son los enteros en general y los naturales en particular. Son los primeros números que aprendemos en la vida, sencillos, de apariencia intuitiva pero con poderosas propiedades. Dado que mi amateur aproximación a la matemática se dio por el camino de la teoría de números, fueron mi primer gran amor matemático.


Sin embargo, no es difícil encontrar fascinante a otros conjuntos de números. Muchas de estos patean el tablero de formas agradables, como los complejos, que se escaparon de la recta real para irse de vacaciones al plano. Entre los más impetuosos contra la intuición están, obviamente, los irracionales. Y a uno de ellos va dedicado este post.

Hace un par de meses divagué con π. Este semana terminé de leer el libro La Proporción Áurea de Mario Livio. Este libro, que evidentemente trata sobre la constante φ (phi), lo compré en Madrid, atraído por la promesa de desasnarme con respecto a la historia de este número.

Primero me gustaría hablarles sobre el libro como tal, el cual resultó sumamente entretenido, aunque tal vez le sobren unas 50 o 100 páginas. Es un paseo por la historia del arte plástico, arquitectónico, escultural y matemático con φ como eje central hilador. Además de dar ejemplos de como se expresan los números en la naturaleza, explica con profundo detalle ciertas propiedades matemáticas en sus numerosos apéndices e invita al lector a pensar sobre porque la matemática encaja también como explicación del universo. Por momentos se va por las ramas pero casi siempre de forma afable y atrapante. Son altamente rescatables los pasajes donde el autor trata con ácida ironía los esfuerzos de los numerólogos de meter a φ lugares arbitrarios cualquiera, como en las dimensiones de Panteón. En mi opinión es un libro altamente recomendable para el aficionado a la matemática y mi calificación (hace mucho que no califico libros con estrellas) es .

En segundo lugar quisiera comentar algunas nerdeadas matemáticas inspiradas en el la lectura de este libro. Empezando por lo principio, presentar a quienes no conozcan el número φ, en las palabras de Euclides:

Se dice que una línea recta está dividida en el extremo y su proporcional cuando la línea entera es al segmento mayor como el mayor es al menor

La frase dividida en el extremo y su proporcional hace referencia a la proporción de la que estamos hablando. La definición para mortales es:

La longitud total a+b es al segmento más largo a como a es al segmento más corto b

El valor en cuestión se puede calcular despejando algebraicamente tomando b=1, y es:

Puede verse que, al igual que π(pi), es un número irracional. Pero, a diferencia de π, es un número algebraico, lo que lo emparenta bastante con teoría de números. Sin embargo, su expresión como fracción continua compuesta de solo 1s (unos), hace que converja muy lentamente, convirtiéndolo en el más irracional entre todos los irracionales. En términos llanos, φ puede expresarse como la siguiente fracción continua:

Nótese que, cada iteración de esta fracción continua puede expresarse como (los primeros 15 valores, esta secuencia fue resultado de este script):

2 / 1 = 2
3 / 2 = 1.5
5 / 3 = 1.666666666666666666666666667
8 / 5 = 1.600000000000000000000000000
13 / 8 = 1.625
21 / 13 = 1.615384615384615384615384615
34 / 21 = 1.619047619047619047619047619
55 / 34 = 1.617647058823529411764705882
89 / 55 = 1.618181818181818181818181818
144 / 89 = 1.617977528089887640449438202
233 / 144 = 1.618055555555555555555555556
377 / 233 = 1.618025751072961373390557940
610 / 377 = 1.618037135278514588859416446
987 / 610 = 1.618032786885245901639344262

Aquel lector atento notará que las fracciones tiene cierto patrón. Por un lado, el numerador de cada reglón pasa a ser el denominador en el siguiente. Los números son:
1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,....
¡Exacto! ¡Es la sucesión de Fibonacci! Cada número es la suma de los dos anteriores. En efecto, siendo F(n) el termino n-ésimo de la serie de Fibonacci:

Así es como puede verse una fuerte relación entre φ y Fibonacci. Y si con Fibonacci se puede calcular la proporción áurea... ¿cómo es la relación a la inversa?

Con esta formula se puede calcular el valor del término n-ésimo de la serie de Fibonacci:

Es fácil reconocer que dentro de esa fórmula está φ.

La propoción áurea φ tiene un montón de raras y divertidas propiedades. Entre las más atractivas se encuentran:


En lo personal aprendí muchas cosas nuevas sobre la proporción áurea. Pero en el apéndice 9 (como dije, es un libro con muchos apéndices) se comenta un concepto que me voló la cabeza: la ley de Benford. El tema se toca tangencialmente, promediando el último capítulo, como un ejemplo de como las matemáticas sorprenden. Y sí que lo hacen.

Pero ese será tema del siguiente post.